AGENDA | 01 | Market Drivers of Flexibilization of Coal Units | 06 | Decommissioning Costs/ Benefits with Repurposing | |----|--|----|--| | 02 | Impact of Market Drivers on Power Plant | 07 | Understanding the Damages – Implications | | 03 | Relative Economics of Grid Integrating Options | 08 | Roadmap for Flexible Operation of Fleet | | 04 | Costs Associated with Flexibilization (CAPEX & OPEX) | 09 | Summary | | 05 | Redesigning Tariff Structure/Interventions | 10 | Questions & Answers | ## igof Indo ## **COAL HAS BEEN THE MAINSTAY OF THE** ## **POWER GENERATION IN INDIA** **SOURCEWISE GENERATION** ## THE INDIAN TRANSITION - India's pledge to increase the share of non-fossil fuels-based electricity to 40 percent by 2030 - 500 GW RE by 2030 - Coal in India is increasingly needed to flexible and play a greener role - Inadequacy of other balancing resources - Coal is the mainstay of power generation in India - Fuel economics-Non-Pit head stations will have costlier fuel - Tightening environmental legislation - Transition to electricity market mechanisms markets will force to operate more efficiently, even during flexible operation ### THE INDIAN ELECTRICITY MARKET APRIL ZUZZ - Largely Long-term Physical Contracts, Supplies on Day-Ahead Basis & PPAs on Two-Part Tariffs (Capacity Charges & Variable Charges) - DSM (Deviation Settlement Mechanism) To Address Intra Day Energy Requirements As Well As System Imbalances - AGC in ISGS Stations - SCED - Flexibility in Generation & Scheduling - Day-Ahead Market & Real Time Market - Compensation Mechanism for Part Load Operation ## WHAT ARE THE MODES OF FLEXIBLE OPERATION? *EPRI* ## **REAL EXAMPLE** ### **SCHEDULING OF A UNIT & THE EFFECT** If we consider a significant load following of ramp size>15%, then we have **AT LEAST 7 SIGNIFICANT LOAD FOLLOWINGS** Each of this event costing >2lakhs INR for the generator, which the **GENERATOR HAS NO WAY TO RECOVER** from the present regulatory mechanism are the SYSTEM OPERATORS, UTILITIES & POLICY MAKERS ALIGNED? is this an **ECONOMIC DISPATCH?** #### **RISKS** - Safety Issues - O&M Cost Under Recovery - Cost of Failures - Efficiency Loss - Increased Emissions #### **OPPORTUNITIES** - Primary Response - Secondary Response/ AGC - Ancillary Service Markets - RTM Cost for One cold start 200 MW-42-91 Lakhs INR 500 MW-174-262 Lakhs INR ## WHY DO YOU NEED TO PREPARE FOR REDUCING THE LEVEL OF MINIMUM LOAD? | DAMAG | Е | |-------|---| | | | | UNIT SIZE | 200-250 MW | 500 MW | |----------------------------|------------|-----------| | Load Following Cost (US\$) | 260-650 | 2500-3500 | | Hot Start Cost (US\$) | 26k-50k | 100k-159k | | Warm Start Cost (US\$) | 36k-66k | 165k-200k | | Cold Start Cost (US\$) | 54k-118k | 225k-340k | ## **EFFICIENCY ISSUES** ## **RELIABILITY CONCERNS** **Tube Failures** Outages Caused by Control Issues Casing/ Refractory Failures **Burner Failures** **Chemistry Issues** FAC Boiler Auxiliary Failures **HEP** Issues Design Issues Start-Up, Shutdown & Cycling Issues Fuel Piping Failures Other Issues ### HARSH REALITIES OF ## **CYCLIC OPERATION** - Flexing with lack of awareness, can be DISASTROUS - Cycling causes **DAMAGE** and when equipment degrades, performance degrades - Damage not immediate but ACCUMULATED and not easy to quantify - By the time symptoms of damage is visible it may have become VERY COSTLY to correct - Flexible operation is a difficult mode of operation and even the most conservative approach will increase plant O&M COSTS along with per MW variable costs - Plants that can operate flexibly to meet market conditions while minimizing the financial impact of operating in this environment will continue to be dispatched at least for the near future - Investments in RETROFITS can enhance the flexibility to a large extent - Revisiting the O&M PROCEDURES, TRAINING & DIGITALIZATION support can enhance flexibilization - COMPREHENSIVE APPROACH NEEDED INVOLVING - PEOPLE, PROCESS & TECHNOLOGY ## **BENCHMARKING** ## **METRICS & KPI** **Knowing the COMPONENT-WISE CYCLING COSTS** is Necessary for deciding Maintenance Schedules #### **DEFINING from Different Perspectives** Minimum Load, Ramp Rate, Start-Up Time & Reserves #### **MEASURING Metrics & Quantifying** Cost Components – EHS, EFOR, EOH & Reliability ### **OPERATIONALISATION of Sources, Options & Preparedness for Coal-Based Plants** Merit Order based on Variable Cost, Heat Rate & Emissions ### **COMPENSATION/ INCENTIVISATION within** Regulatory Framework, Market Structure & **Mechanisms** Ancillary Service, DSM, AGC & Real-Time **FLEXING & OPERATING** – choosing which units to **FLEX** is based on TECHNICAL CAPABILITY & MARKET MECHANISMS and to OPERATE is based on the **VALUE** it can provide to the system - Ramping - Start-Up Time - Off-Line Capabilities - Spinning Reserves Capability - - Minimum Stable Generation **Primary Reserves Capability** Automatic Voltage Regulation (MVAr) #### **DEFINING NEW FLEXING PRODUCTS** - Merit Order Dispatch - **Marginal Cost Pricing** - **Opportunity Cost Pricing** - **Price Discovery** #### KPI - Simple to Understand & Calculate - Include Cost-Benefit Approach - **Prioritise** - Include Techno-Economics/ Market Based - Generalisability/ Easy to compare across Units One KPI could be **Economic Weighted Availability Factor** – availability has different value when there is demand & high market price which can be useful in planning for maintenance to enable the unit to deliver flexibility services when required. ## **CATEGORISATION OF UNITS** ## FOR DIFFERENT MODES OF OPERATION **CATEGORY** **METRICS** **Base Load** 140GW/299Units ECR<< State M.O. GCV < 2800, VM < 15% Supercr. (except 14 Units) Flexible-Low Load ECR=> State M.O.(>Rs.2.5/KWH) GCV >2800,VM > 15% Flex with **Efficiency** Retrofit Units>25 Years Unit size-200 and above HR> 2500 **Flexible Daily** Start ECR>> State M.O. (unlikely to get schedule in 2022) HR>2500, GCV>3400 Retire/ Replace >25Years HR>2600 Unit sizes<200 MW ## CASE STUDIES EXAMPLES ## GLOBAL - NREL Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants - NREL Power Plant Cycling Costs - NREL Western Wind and Solar Integration Study - PMJ Renewable Integration Study - Electricity Supply Board of Ireland – Cost of Cycling for Irish Electric Supply Board - Public Power Corporation of Greece – Assistance on Phase I Cost Forecasting for PPCG - Origin Energy, Eraring Station Flexibility and 2-Shift Operation Analysis, Australia - EPRI Effect of Flexible Operation on Boiler Components: Theory and Practice #### **INDIA** - Damage Assessment & Cost of Cycling Studies - NTPC Ramagundam - NTPC Jhajjar - GSECL Ukai (2 units) - Feasibility assessment & pilot tests - NTPC-Dadri, Simhadri, Mauda, Vindhayachal, Farakka - DVC Andal, Tata Maithon, Sagardighi - Regulatory Support - Inputs for CEA & CERC, through USAID's GTG-RISE programme - Implementation - Dadri- Condensate throttling, Mill Auto Scheduler - Capacity Building - Knowledge dissemination ## **CASE STUDIES SCOPE -FEASIBILITY EQUIPMENT HEALTH STUDIES ASSESSMENT OPERATIONS AUDIT SCOPE RECOMMENDATIONS FOR OPERATIONS IMPROVEMENTS** #### **EQUIPMENT HEALTH ASSESSMENT** - Is there any damage? - What are the damage mechanisms? - How fast is the damage progressing? - When will the damage cause failures? - Are there any low probability but high impact risks? #### **OPERATIONS AUDIT** - Operating Procedures Review - Startup & Shutdown - Protocols (Standing Orders) - Generation Deficiencies & Incidents Documentation/ Reporting - Training - Performance Tests vs Design - Review of Generation Statistics (FOR, EFOR, Availability, etc.) - Maintenance & Inspection Schedules, Predictive Maintenance Tools, Spare Usage, SOW - Digitalisation Maturity - Usage of Predictive & Condition Assessment Tools - Design Review & Requirement of Retrofits #### RECOMMENDATIONS FOR OPERATIONS IMPROVEMENTS - Recommendations for Capital Projects To Reduce Cyclic Damage - Review & Critique Cycling Cost Methods Used By Utility - Development of Improved Cost Estimates - Recommendations on use of Improved Cycling Cost Information in System Operations & Planning ## Varying Coal Quality posed a major challenge to flexibilization(during test runs) - Burning each grade of coal will require a different operating Regime, which needs to be defined. - Maintaining combustion stability with Varying coal quality along with varying loads is challenging - Operating Procedures need to be revisited - Sufficient, Accurate, Reliable measurements needed | Table No: Samples collected from Coal Stations | | | | | | | |--|--------------|--------|---------|--------|-------|------| | Sample | Moist
(%) | VM (%) | Ash (%) | FC (%) | HGI | GCV | | 1 | 7.2 | 25.3 | 36.36 | 31.14 | 68.54 | 3795 | | 2 | 6.05 | 25.25 | 29.92 | 38.78 | 59.22 | 4058 | | 3 | 8.24 | 18.34 | 45.5 | 27.92 | 65.2 | 2869 | | 4 | 11.45 | 26.06 | 38.92 | 23.57 | 62.5 | 3264 | | 5 | 4.86 | 31.82 | 30.02 | 33.3 | 58.62 | 4623 | | 6 | 6.99 | 27.79 | 35.21 | 30.01 | 76.09 | 3871 | | 7 | 7.41 | 29.96 | 32.49 | 30.14 | 61.23 | 4821 | | 8 | 13.28 | 20.54 | 34.46 | 31.72 | 48.69 | 4014 | | 9 | 9.81 | 23.45 | 38.38 | 28.36 | 65.93 | 4268 | | 10 | 12.96 | 22.74 | 46.51 | 17.79 | 57.49 | 2636 | | 11 | 4.04 | 28.97 | 24.26 | 42.73 | 60.37 | 5003 | | 12 | 6.08 | 24.01 | 43.85 | 26.06 | 76.65 | 3692 | | 13 | 6.58 | 27.01 | 38.6 | 27.81 | 70.32 | 3962 | | 14 | 2.66 | 22.75 | 53.22 | 21.37 | 57.28 | 3645 | | 15 | 7.39 | 31.05 | 32.28 | 29.28 | 52.33 | 4538 | | 16 | 13.6 | 18.71 | 46.97 | 20.72 | 59.22 | 2683 | | 17 | 8.91 | 20.89 | 44.67 | 25.53 | 63.57 | 3066 | | 18 | 4.79 | 22.11 | 41.77 | 31.33 | 62 | 3937 | Challenges in preparing Units for reducing their level of minimum load? ### FOR MINIMUM LOAD & RAMP RATES To prepare **INDIA'S COAL POWER PLANTS PILOT STUDIES**, test runs were conducted under the directions of MOP and supported by USAID, IGEF, and Jcoal. Important stakeholders included: OEMs (*GE, Siemens, BHEL*), Intertek, VGB, Engie Lab, NTPC, GSECL, KPCL, DVC, Tata Power, WBPDCL & UPPDCL. ## **PILOT LOCATIONS** - NTPC Jhajjar Power Plant (500 MW) Jhajjar District, Haryana, India at 28.4892° N & 76.3557° E - NTPC Ramagundam Power Plant (200MW) Peddapalli District, Telangana, India at 18.7589° N & 79.4555° E - NTPC Dadri (200 & 500MW) UP. India at 28.5985° N & 77.6087° E - NTPC Simhadr (500 MW) Visakhapatnam, Andhra Pradesh, India at 17.5961° N & 83.0875° E - GSECL Ukai TPP (200 & 500 MW) Vagda, Gujarat at 21.2121 ° N & 73.5606° E - Anpara A (500MW) Sonbhadra District, Uttar Pradesh, India at 24.2049° N & 82.7832° E - Bellary (500MW) Karnataka, India at 15° 11′ 31.5″ N & 76° 43′ 03.8″ E - Tata Maithon (500MW) Jharkhand, India at 23° 49′ 13″ N & 86° 45′ 36″ E - DVC, Andal (500MW) WB at 23° 34′ 55.61″ N & 87° 11′ 8.62″ E #### **LOW LOAD** - From 500MW to 198MW & BACK with hold points - 500-360 MW- 5mills - 360MW-300MW-4mills - 300MW-275MW-4mills - 275-198MW-3 mills (C,D,E) #### **TURNDOWN OF MILLS** - Loading of mills were reduced till 50% load - If any mill was required to be loaded below 50%, it was with drawn and other mills loaded REVIEW OF SLIDING PRESSURE CURVE & PA FLOW CURVE UNIT ASSESSMENT WITH HP HEATERS BYPASS #### **RAMPING** - Ramp up/down of 1%, & 3% were checked at different load range - CMC on except during ramp up @3% from 360-500MW when CMC response was very fast (CMC made off) - There was a difference in CMC response and actual ramp achieved at lower loads (for 3% ramp) - Unacceptable deviation in parameter (SH Temp, RH, excessive SH spray) - Due to thermal shock, falling of big sized clinker which dislocated SC chain - Sliding pressure needed to be modified - BFP R/C valve (full open/close) posed problems in drum level control #### **CONCLUSION** - Upgrade of C&I system needed - Changes in operational procedures (eg- Soot blowing, Burner tilt operation, air flow, mills selection & turndown) ### igof Indo-German Energy Forum ## TEST RUNS COMMON ISSUES - In all the test runs conducted, it was observed that CONTROL LOOPS were not tuned for low loads - Burner tilts were on MANUAL key variable having significant influence on steam temperature parameter control - More number of mills than required were kept in service to take care of the exigencies of MILL TRIPPING - PRIMARY AIR FLOW maintained higher than anticipated values as mills were operated at full mill air flow irrespective of the mill loading - **SECONDARY AIR FLOW** is very much less than the desired level resulting in no or low windbox dP at part loads - WB PRESSURE was improved by closing the secondary air dampers of the mills that were not in service & optimising the primary air flow - STEAM COIL APH was not available/not used regularly - SLIDING PRESSURE was in service needed modification - The **PARTIAL STEAMING OF ECO** occurred at low load which can be allowed only for a short time - Increase in SH TEMPERATURE during load ramping - HIGH SH SPRAY - Jerky operation of FEED WATER FLOW on opening of the recirculation valves at low load - The analysis of DIRTY AIR FLOW results reveals that there is a good degree of imbalance in coal flow across the pipes at low load ### COMBUSTION OPTIMISATION - Coal fineness - Balancing of Coal flow across the coal pipes - Fuel/Air ratio, Combustion air - Furnace exit gas temperature - Bottom Ash & Fly Ash Unburnt - Flue gas temperature and excess air stratification - Flue gas oxygen /Excess air level - Coal mill inlet/outlet temperature - Primary Air header pressure - Mill outlet temperature - Pulverized coal flow velocity /Temperature of coal - Windbox pressure - Burner Tilt - Flame scanners - Coal fineness - Selection of burner Flame scanners modifications Burner modification ## Fuel Firing System Optimization Package #### for low load oprn: - Air/Fuel ratio - Coal pipes dynamic balancing - Auto mill scheduler /start/stop - Coal analyser ## DYNAMIC COAL FLOW MONITORING AND MANIPULATION SYSTEM Trending and manipulation Based on Real time #### measurements - Coal Mass Flow in each pipe - Coal Roping Area identification - Coal Temperature in each pipe - Coal Velocity in each pipe - Coal Flow Balancing - DP across Variable Orifice - Automatic Coal Pipe Balancing by Variable Orifice (Future proposal) - 3 Mass Flow sensors (microwave based) placed at 120° apart) - Measures mass flow & indicates coal roping. - Velocity sensors(Electrostatic based) placed 500mm above the mass flow sensors. - Measures coal particle velocity and temperature. - Monitoring software integrated with system # Unbalanced flow- Unequal fuel/air distribution across coal pipes Two burner nozzles of the same mill Erosion due to Coal Roping ## **DYNAMIC COAL FLOW BALANCING** ### **Before Balancing** | Before Balarienig | | | | | |-------------------|--------------------|-------------------------|-----------------------------------|-----------------------------| | | Mass Flow
(TPH) | Percentage
Mass Flow | Theoriti
cal
Equal
(TPH) | Percentag
e
Deviation | | Total(Mill) | 47.2 | 100% | | | | Corner-1 | 11.44 | 24.24% | 11.80 | -3.05% | | Corner-2 | 8.96 | 18.98% | 11.80 | -24.07% | | Corner-3 | 17.44 | 36.95% | 11.80 | 47.80% | | Corner-4 | 9.35 | 19.81% | 11.80 | -20.76% | ## After Balancing | Mass Flow
(TPH) | Percentage
Mass Flow | Theoritic
al Equal
(TPH) | Percenta
ge
Deviatio
n | |--------------------|-------------------------|--------------------------------|---------------------------------| | 47.16 | 100% | | | | 11.3 | 23.96% | 11.79 | -4.16% | | 11.55 | 24.49% | 11.79 | -2.04% | | 12.48 | 26.46% | 11.79 | 5.85% | | 11.82 | 25.06% | 11.79 | 0.25% | | Coal
Pipe | Initial Setting - BHEL RECOMMEND ED ORIFICE OPENING | Final Setting -
ORIFICE
OPENING TO
ACHIEVE
BALANCED
FLOW | |--------------|---|---| | D1 | 100% | 98% | | D2 | 74.5% | 85% | | D3 | 70% | 51% | | D4 | 78% | 76% | ## IMPLEMENTATION OF FLEXIBILIZATION RETROFITS - Condensate throttling at NTPC, Dadri - Mill Auto Scheduler Auto-Start of Mills & Fans - BFP R/C Valve Replacement with control valve - Online Coal Analyzer - Boiler Fatigue Monitoring System ## **FLEXIBLE OPERATION OF FLEET** **ROADMAP** ## AWARENESS PREDICTABILITY RISK MANAGEMENT OPTIMISATION #### Indo-German Energy Forum ## **FLEXIBLE OPERATION** UNDERSTANDING THE DAMAGES DUE TO FLEXIBLE OPERATION LEADS TO COSTS & SAFETY IMPLICATIONS ## COMBUSTION ISSUES DURING LOW LOADS - Fuel Quality issues - Mills Performance - Burner Performance - Furnace Heat Balance - Ensuring Waterwall Cleanliness - Refractory & Casing Issues - PA Fan Issues - Burner Damper/ Tilt Issues - Other ## **EXAMPLES OF TYPICAL**DAMAGE MECHANISMS #### **CORROSION** - Acid phosphate corrosion - Under deposit corrosion - Caustic gouging - High temperature corrosion - Below dew point corrosion - Out of service corrosion - FAC - DNB #### **OVERHEATING** - Short Term - Long Term #### **CRACKING** - Stress Corrosion Cracking - Thermal Fatigue - Corrosion Fatigue - Cyclic fatigue - Fatigue - Creep - Creep Fatigue #### **PITTING** - Corrodants - Oxygen - Hydrogen Damage #### **EROSION** - Ash - Saturated Steam - High Pressure Water - Loose Connections - Mechanical Rubbing - Gases - Contamination - Fouling - Thermal Quenching ## CRACKING OF THICK WALL COMPONENTS during Starts/ Shutdown & Ramping Operation TYPICALLY SHUTDOWN OPERATION IS CRITICAL When cold water is fed during Hot Start-Up LEADS TO QUENCHING **CRACKING OF LIGAMENT BETWEEN STUBS** PIPE CRACKING ## **FAILURES DUE TO** ## **TEMPERATURE TRANSIENTS & ACID DEW POINT CORROSION** #### **TEMPERATURE TRANSIENTS** WW FAILURE – 3 HOURS OF START-UP (SHORT-TERM OVERHEATING) **SH LT OVERHEATING** (SHORT-TERM OVERHEATING) - Inadequate steam flow - Drainage is critical (operation in auto) - Ensure adequate flow in SH #### **ACID DEW POINT CORROSION** **ESP COLLAPSE** Continuous operation with Flue Gas temperature close to acid dew point ## **DAMAGES TO TURBINE BLADES** ## **EXFOLIATION/ PITTING** **EXFOLIATION** **DAMAGE TO SEALS** PITTING #### **OTHER AREAS** include: - Turbine Valves - Damages due to Uneven Expansion - Hammering in Pipelines #### **COMMON REASONS** for **DAMAGES** apart from **TEMPERATURE TRANSIENTS** are: - Excessive Use Of Spray & Water Carry Over - Chemistry - O2 Ingress ## **CHEMISTRY RELATED** ## **DAMAGES** 37 **TURBINE SIDE STRAINERS DAMAGE** SCALE DEPOSITS PITTING Typically, in stations where there two PA fans for full load, at low load, **STALLING** is common Unless operating procedures are modified, there can be **SEVERE DAMAGE** ## **BOTTOM ASH EXPLOSION** ## **DURING LOW LOAD OPERATION** #### igof Indo-German Energy Forum ## **TOTAL COSTS OF DAMAGE** - NECESSARY to tailor the Overhauling & Maintenance Intervals of Units supported by Data - Analysis of Component-Wise Cost Data is IMPORTANT - Predictive Tools - Estimated Weekly Damages - EFOR & Life Management Actions - Intertek COSTCOM, AWARE, EPRI, GE ... #### ANNUAL COST OF CYCLING DISTRIBUTION ### **SUMMARY** The mode of flexible operation will depend on the market context, fuel costs, plant design, vintage Interventions and Investments for flexible operation have to be based on cost-benefit analysis. The first thing for flexible operation is awareness of the damage mechanisms and the cost & risks associated with each type of flexible operations – with awareness, there can be a huge reduction in the costs of cycling Flexible operations will need changes in operating procedures, a different approach with respect to inspection strategy and outage intervals/ scope Tools are available for managing plant integrity, improving reliability and part load efficiency Preparations for flexible operation needs a comprehensive approach (people, process, and technology) # Thank You for your Attention Anjan Kumar Sinha 9650992971 Sinha.anjan@gmail.com ## **IMPACT ON TARIFF** #### igof Indo-German Energy Forum **FC + ECR – 200P/KWH** | E | MINIMUM LOAD WITH
SIGNIFICANT LOAD
FOLLOWING | UNIT LOADING % | DUE TO HR | ADD O&M | START-UP ALL | TOTAL IMPACT (FC+VC) | |---------------------|--|--|----------------------------------|--|-----------------------|-------------------------------------| | 200/210 MW UNIT | | | ADDL. PAISA/KWH | | | | | | | 90% | 0 | 0 | 0 | 0 | | \leq | | 80% | 0 | 0 | 0 | 0 | | 10 | | 70% | 2.1 | 3.31 | 0 | 5.4 | | /2 | | 60% | 7.5 | 3.31 | 0 | 10.8 | | 00 | | 50% | 15 | 3.31 | 2.5 | 21.3 | | L 2 | | 40% | 23.2 | 3.31 | 2.5 | 29 | | TYPICAL | | 30% | 34.6 | 3.31 | 2.5 | 40.5 | | YP | WEEKLY START | | 23.2 | 60.22 | 14.8 | 98.2 | | - | DAILY START | | 7.5 | 257.39 | 35.2 | 330.1 | | | | UNIT LOADING % | DUE TO HR | ADD O&M | START-UP ALL | TOTAL IMPACT (FC+VC) | | = | | | ADDL. PAISA/KWH | | | | | | | | | ADDL. PA | ISA/KWH | | | L N | | 90% | 1.1 | ADDL. PA | ISA/KWH
0 | 1.1 | | M UNII | MINIMUM LOAD WITH | | 1.1
3.4 | | | 1.1
3.4 | | MW UNIT | MINIMUM LOAD WITH SIGNIFICANT LOAD | 90% | | 0 | 0 | | | INU WM 00 | | 90%
80% | 3.4 | 0 | 0 | 3.4 | | 200 | SIGNIFICANT LOAD | 90%
80%
70% | 3.4
6.7 | 0
0
7.15 | 0
0
0 | 3.4
13.8 | | 200 | SIGNIFICANT LOAD | 90%
80%
70%
60% | 3.4
6.7
12.6 | 0
0
7.15
7.15 | 0
0
0
0 | 3.4
13.8
19.7 | | 200 | SIGNIFICANT LOAD | 90%
80%
70%
60%
50% | 3.4
6.7
12.6
20 | 0
0
7.15
7.15
7.15 | 0
0
0
0 | 3.4
13.8
19.7
27.2 | | TYPICAL 500 MW UNIT | SIGNIFICANT LOAD | 90%
80%
70%
60%
50%
40% | 3.4
6.7
12.6
20
27.6 | 0
0
7.15
7.15
7.15
7.15 | 0
0
0
0
0 | 3.4
13.8
19.7
27.2
34.8 | ## TYPICAL COSTS OF DELIVERING FLEXIBLE POWER #### igof Indo-German Energy Forum ## FOR RE-INTEGRATION FROM COAL | | FACTORS | PARAMETERS | | | |-----------------------------|----------------------|---|--|--| | COST OF FLEXIBLE OPERATIONS | ENERGY CHARGES | Start-Up Cost increases due to increase in Heat Rate APC Oil Support | | | | | O&M COST | Increased EFOR Accelerated Life Consumption due to Start-Ups Load Following | | | | | FIXED COST | Accelerated Life Consumption will have impact over
unit availability in long-term EROF can impact unit availability in short-term | | | | | ENVIRONMENTAL IMPACT | Specific (Kg/MWh) Nox, Sox & CO emissions will be somewhat higher at unit levels while flexing Overall emission would reduce for flexible units due to reduced coal usage Significant adverse impacts are very unlikely due to installation of emission control devices | | | #### igof Indo-German Energy Forum ## **FOR FLEXIBILISATION** | INTERVENTION | | COST '000" US\$ | IMPLEMENTATION TIME (MONTHS) | |--------------|--|-----------------|------------------------------| | 1 | Boiler Model for Temperature Optimization | 150 | 6 | | 2 | Mandatory Control Upgrades Minimum Load | 250 | 12 | | 3 | Installation of Two Feedwater Recirculation Valves | 100 | 6 | | 4 | Mandatory Control Upgrades Ramp Rates | 200 | 9 | | 5 | Further Flexibility Enhancement by Controls | 500 | 6 | | 6 | Coal Flow Balancing (Five Mills) | 500 | 6 | | 7 | Condition Monitoring | 300 | 6 | | 8 | Sootblower Optimization | 150 | 6 | | | TOTAL | 2150 | 12 | **CAPEX** would vary across the units depending on: - Design - Vintage - Historical Operation Modes - Coal Quality - Degree of Flexibilization required from the unit It is in the range of INR 20 Crore (US\$ 2.2 Million) to 50 Crore (US\$ 5.5 million) ## **POLICY & REGULATORY GUIDELINE** ### **INDIA** #### **NATIONAL RENEWABLE ENERGY POLICY** - Focusing on accelerating the use of Clean & Renewable Energy (500 GW by 2030) - Strengthens "Must-run" Status of RE Provisions of RPO minimum purchase of 5% (2011) & enhanced to 21 % from 2022 - Proposed Electricity Amendment Act 2020/21 Provisions for Penalty on NOT MEETING the RPO & doubling every successive year on default - Bundling of RE with Thermal Energy - Minimum Adequate Capacity Resources - Ensuring Payment Security Mechanisms (Institutional Mechanisms) #### POLICY INTERVENTIONS ON THERMAL PLANTS TO ENABLE THEM TO SUPPORT RE INTEGRATION - Part Load Compensation for ISGS Units - Incentivisation for Increased Ramp Rates - Market Intervention (AGC, RTM, Ancillary Service) - CEA's Guideline for Flexibilization of Thermal Plants - Technical Minimum load @55 % & Ramp Rate of 3% (Sub-critical)/ 5% Super-critical Mandatory - Plants to achieve capability of 40% min load within 3 years after Interventions/ Retrofits ## MARKET DRIVERS OF FLEXIBILIZATION OF COAL UNITS - Renewables Transition in India - Falling renewable costs, increasing market penetration & intermittency issues - Increasing Requirements of Ancillary Services, DSM, AGC - Fuel economics-non-pit head stations will have Costlier Fuel - Tightening Environmental Legislation - Inadequacy of Other Balancing Resources - Transition to Electricity Market Mechanisms ## IMPACT OF MARKET DRIVERS ON POWER PLANT - Shift from Base-load to Flexible Mode of Operation - Rapid Increase in Unit Starts- Even in New Plants - Increased need for Load Following - Reduction in Minimum Load - Need to Operate Flexibly even with Wider Grades of Coal - Off-Design Operation and Fuels including Co-Firing (Recent Policy Mandate) - Need for Refurbishment, Upgrades and Life Extension – Capital Costs - Plant Lay-up & Standby Requirements - Uncertain Environment for Investments - Some Assets become Unviable unless they adapt for survival - Increased Operational Costs